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Abstract. Forests have important roles in terms of carbon storage and other values. Various 

studies have been conducted to identify and distinguish the forest from non-forest classes. Several 

forest types classes such as secondary forests and plantations should be distinguished related to the 

restoration and rehabilitation program for dealing with climate change. The study was carried out to 

distinguish several classes of important forests such as the primary dryland forests, secondary 

dryland forest, and plantation forests using Landsat 8 to develop identification techniques of specific 

forests classes. The study areas selected were forest areas in three districts, namely Karo, Dairi, and 

Samosir of North Sumatera Province. The results showed that using composite RGB 654 of Landsat 8 

imagery based on test results OIF for the forest classification, the forests could be distinguished with 

other land covers. Digital classification can be combined with the visual classification known as a 

hybrid classification method, especially if there are difficulties in border demarcation between the two 

types of forest classes or two classes of land covers. 
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1 INTRODUCTION 

Indonesia's forests have an 

important role in the world in terms of 

carbon storage and other values (FORDA 

Team for Climate Change, 2010; Sumargo, 

et al., 2011). 

Various studies have been conducted 

to identify and distinguish the forest and 

non-forest classes using Landsat data 

either using a single data or multitemporal 

data (Kartika, 2010; Kartika, et al., 2012; 

Kartika, et al., 2011). 

Several forest types classes such as 

secondary forests and forest plantations 

are needed to be distinguished related to 

the restoration and rehabilitation program 

in dealing with climate change. 

The methods used can be divided 

into digital and visual methods. Digital 

method is very dependent on atmospheric 

conditions of the data, and the method is 

divided into supervised and unsupervised 

methods. Supervised digital method, also 

depends on the sampling, while a visual 

method depends on the interpreter 

(Sutanto, 1986). 

The Ministry of Environment and 

Forestry (KLHK) classifies forest types into 

7 classes using Landsat data, namely: 

primary dryland forests, secondary dryland 

forests, primary swamp forests, secondary 

swamp forests, primary mangrove forests, 

secondary mangrove forests, and forest 

plantations (Rochmayanto, et al., 2014). 

While forest classification based on 

Indonesian National Standard (SNI) 

depends on the scale used; to a scale of 1: 

1,000,000, forest types are divided into 2  

classes, ie dryland forests and wetland 

forests; to a scale of 1: 250,000, forest 

types class are divided into four, namely 

primary dryland forests, secondary dryland 

forests, primary wetland forests, and 

secondary wetland forests. As for the scale 

of 1: 50,000 or 1: 25,000, each class of 

forest on a scale of 1: 250,000, divided by 
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type, such as primary an

dryland forests, each consisti

forests, mixed forests, Teak

forests, woods Acacia, Eucal

White Teak forests,  Sengon fo

forests, Mahogany forests, R

and Jelutung forests. In a

type of the forest is divide

classes again, is dense, m

sparse. While primary an

wetland forests, each consis

type such as mangroves, m

Nipah forests, and Sago 

forest type is further divide

moderate,  and sparse, as

forests (SNI, 2010). 

With the availability o

generation of Landsat data

the study aims to utilize t

distinguishing several clas

types such as primary dry

secondary dryland forests

plantations by developing 

techniques on  this  forest 

The case study area is  fores

province of North Sumatera

3 districts, namely Karo,

Samosir. 

 

2 MATERIALS AND MET

2.1 Data and Location 

This study was loca

Sumatera Province, in the vi

Toba, includes three dist

Karo, Dairi and Samosir, 

Figure 2-1. 

The data used is Lan

row 129/058 which was 

February 21, 2015. 

 

2.3 Research Methods 

The Landsat 8  data 

study were data with path/

dated February 21, 2015, c

areas of the forest area surro

Toba. The Natural Color Com

imagery using Red Green

filters from Bands of 6, 5, an

RGB 653 as shown in Figure
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y of the newest 

ata (Landsat 8), 

e these data in 

lasses of forest 

dryland forests,  

sts, and forest 

ng identification  
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Figure 2-1: The Study Area

 

 

Figure 2-2: NCC RGB 653 Im
path/row 129/58 
21, 2015 

 

Bands selection 

natural color composite

was conducted based on

used Landsat previ

(Landsat 5 and Lands

imagery was composed 

spectral bands that ca

natural color such as th

is green, the soil color  

body color is blue.  

composite bands of RGB

the red filter using Ban

the green filter using B

Red) and on the blue fil

(green). In this study, b

Landsat 8, to obtain the

the spectral wavelengt

should be the same as th

7 above, namely the com
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composite RGB 653, meaning the red filter 

using  Band-6 (SWIR-1), the green filter 

using  Band-5 (Near Infra Red) and the 

blue filter in Band-3 (Green). 

In terms of the selection of the bands 

to composite the RGB imagery this could 

have used another technique, namely the 

method of OIF (Optimum Index Factor), 

i.e. the method of statistically to  

calculating the division between the 

number of standard deviation spectral 

numbers on the three bands with the 

number of the absolute value of the 

correlation coefficient between any two of 

the three bands (Jensen, 1986), where OIF   

algorithms can be written as follows: 

 

 

(2-1) 

where : 

Sk  = standard of deviation of the 

spectral value from the bands. 

Abs(rj) = The absolute value of the 

correlation coefficient between 

each two of the three bands. 

 

OIF Values which high, means a 

composite form presents color is more 

diversity so as to provide much spectral 

information. 

In identifying the object of  forest 

types visually using a combination of 

bands that had been chosen (natural color 

or test results OIF) on imagery other than 

the keys of interpretation, had used the 

help of a map of land cover current as a 

reference. The KLHK divides forest land 

cover classes into seven classes as 

mentioned above, the standard 

interpretation of Landsat imagery for 

forest types classification, are presented in 

Table 2-1. (MoF, 2003). KLHK  identifying 

and updating land cover using visual 

interpretation of Landsat data and field 

survey.  

After identification, next is created 

the training area for several classes of 

forest and non-forest of the study area  in 

North Sumatera Province; then the 

classification was done digitally using the 

Maximum Likelihood method. In addition 

to the selection of training area with the 

help of maps of land cover from KLHK and 

the keys of interpretation, the training 

area  was created  homogeneous  so that 

mixing class between classes with one 

another was small. The homogeneity test 

was done by calculating of  coefficient of 

variation  of each of  channel of imagery in 

the training area which created. The 

mathematical equation 

 

CV = SD/Mean (2-2) 

 

Where: 

SD  = standard of deviation 

Mean = the average digital value in the 

training area. 

 

The smaller the CV value indicates 

more homogeneous variations, so that the 

classification results are expected not 

much mixing. 

 
Table 2-1: Standard of  Interpretation of Class of 

Forests  Using Landsat data from  
KLHK (Source: MoF, 2003) 

 

 
 

 

Meanwhile, to test the mixing of classes of 

forest and non-forest using Matrix Confusion 

methods, we used the mathematical 

equation as follows: 



Heru Noviar and Tatik Kartika 

 

 

 

142 

 

International Journal of Remote Sensing and Earth Science Vol.  13  No. 2  December 2016 

 

 ������� �		
��	� =  



�
∑ ���

�
��
 ���� �		
��	� =

���

∑ ���
�
��


 
(2-3) 

  

����� =  
�� − ��


 − ��

 (2-4) 

 

Where,  

nii = number of pixels from class i which 

classified correctly on class i of the 

reference data, 

nij  = number of pixels from class j of the 

reference data which classified as 

class i, 

n  = number of pixels totals, 

k  = number of class totals, 

P0  = overall agreement, 

PC = chance agreement. 

 

To create the curve of spectral 

pattern that is formed from the channel  

imagery used in the classes of forest were 

obtained of the value of  average (Mean) of 

the training area of from  identification of 

objects. The complete study flow diagram 

was presented in Figure 2-3. 

 
Figure 2-3: Flow diagram of the study 

3 RESULTS AND DISCUSSION 

In the NCC RGB 653 imagery, forest 

and other vegetations were seen as green, 

but different hue, brightness, texture and 

others. Visually, the green vegetation 

could be distinguished, but in interpreting 

as forests, plantations, rice fields and 

others require interpretation keys  and 

experience of interpreter. Besides, also 

required secondary data such as field 

surveys and other supporting data such 

as maps land cover or the use of existing 

land. 

The results of visual interpretation 

and  maps of  land cover that have been 

created by KLHK (newest updating in 

2013) was used as a reference for 

identifying forest types classes in the 

study area. 

The results of the composite  selection  

using the OIF methods to  obtain a 

combination of the bands used that provide 

a variety of information, was presented in 

Table 3-1 and Table 3-2. 

 

Table 3-1: Test Result of  OIF from Class of Forests 

 

 

 

Table 3-2: Test Result of  OIF from Class of Land 
Cover 

 

 

 

Band 1 and band 2 should be 

removed or not used in the calculation of 

the value of OIF, because the band 1 and 

band 2 have high spectral scattering that 

causes the value of OIF be high, so it 

cannot represent the spectral value of the 

earth's surface (Chaves, 1982, in Jensen, 

1986). Thus the composite using Bands-1 
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and 2 were ignored, resu
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class was a combination 

while on land cover classes,

of the best composite RGB 65

If we compared the th
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forest, the secondary dry
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color imagery. The results o

can be seen in Figure 3-1. 

 

  

RGB 653             RGB 654      
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the boundary between 
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 cover. Results 

and map land 

udy for class 
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 Figure 3-2.  

 it could be seen 
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 primary and 
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st which was in 
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n of KLHK that 

econdary forests 

ests visible scars 

pots or rutting, 
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color on the 
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From Figure 3-3 (a) it 

seen that it was clearly

difference between  second

forests  and forest plantatio

plantations, color  green loo

different from the forest ne

dryland forests), also at fores

seen the appearance of  s

homogeneous texture. In Fig

as well as differences betwe

dryland forests and forest

either of the green hue, br

texture.   

The results of a field 
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11, 2015, forest plantations

in the region (Kecamatan T
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Pulp Lestari). Results photo 

on the forest plantations i

(Kecamatan Tele, Samosir) w

in Figure 3-5.  Plantation Fore

was also located in the f

Pulau Samosir (Figure 3-6.) 
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From the results of

classification, especially in fo

the study area was only o

classes of forest, ie primar

secondary dry forest and fore

After  forest types classes w
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(Figure 3-7) and to determ
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digitally. In addition, from

area which had been creat
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(reflectance) on each band

Landsat 8 (1-7) which ha
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From Table 3-3, the value of the CV 

coefficient of variation (color table) of all 

the training areas of forest class from  all 

channels of Landsat 8, average, below 

30%, it was considered good or fulfill  the 

standard of selection of homogeneous 

training areas (training area is said good 

or nearly homogeneous if the CV is less 

than 30%). 

 
Table 3-3: Coefficient of Variation of the training 

area on forest class of 7 channels 
Landsat 8 

 

 

 

From the confusion matrix between 

the training of areas with  classification 

results on region samples were obtained 

overall accuracy, ie 98.27% of 27,652 

pixels and the value of kappa value, ie  

0.976. While the confusion matrix 

between the training area which  are 

taken randomly and the  classification 

results were shown in Table 3-5. From 

Table 3-5 was obtained overall accuracy of 

97.14% and the kappa value, ie 0.961. 

When compared to Table 3-4, the result of 

confusion matrix in Table 3-5, the value of 

overall accuracy was not much different 

(equally good), above 97%, as well as the 

statistical value of kappa, meaning that 

accuracy was equally good.  

From these results, the digital 

classification had provided good results to 

be able to distinguish the forest type 

classes. While the visual classification had 

shown more difficult to draw the line 

among forest type classes. Thus the digital 

classification could also be combined with 

visual classification, especially if there 

were difficulty in drawing the line between 

the two classes of forest or land cover two 

different classes. This method has also 

been known as a hybrid interpretation. 

The hybrid interpretation according to 

Suharyadi (2010) is a technique that 

combines the visual interpretation for the 

delineation of the object, and using the 

principles of digital spectral pattern 

recognition to identify the object. 

 

Table 3-4: Results of confusion matrix between 
training of  area  with the classification 
results 

 

 

 
Table 3-5: Results of confusion matrix between 

new training area  with the classification 
results 
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Spectral patterns of the several 

forest types have the similar trends. In the 

study area, the spectral numbers of the 

primary dry forest are higher than the 

secondary dryland forests, with numbers 

between 20 and 25. Forest plantations 1 

and 2 have a higher spectral value, but for 

plantations 1 did not differ significantly 

with the spectral value of forest land dry 

primary and secondary dry forest. Thus, 

there is difficulty distinguishing the forest 

classes based solely on spectral value. 

 

 
Figure 3-14: Spectral Pattern of Primary and 

Secondary Dryland Forests, Forests 
Plantations 1 and 2  (Bands 1 to 7) 

 

4 CONCLUSION 

The composite RGB 654 Landsat 8 

imagery based on test results OIF for the 

forest classification, showed that the 

forests could be distinguished with other 

land covers. The results of the forest 

identification in the study area using 

Landsat 8, obtained four classes of 

forests; those were primary dryland 

forests, secondary dryland forests, and 

plantation forests which then was divided 

into two types, namely plantation forests 1 

(Pine forests) and plantations forests 2 

(Eucalyptus). 

This study also provides results that 

the digital classification can be combined 

with the visual classification known as a 

hybrid classification method, especially if 

there are difficulties in border 

demarcation between the two types of 

forest classes or two classes of land 

covers. Spectral number of the forest 

types classes have the similar pattern, but 

it is quite difficult to conclude if the forest 

classes based solely on the spectral 

number. 
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